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Abstract. Aviation has been facing a constant expansion since the first flight by an airplane was achieved, and 
nowadays the success of aviation, is closely linked with the success of local economies. On the other hand, the 
airline business is a challenging environment to thrive economically, due to the high costs and low profit margins 
involved. Hence, it is critical that airlines optimize their operation, in order to succeed in the long term, in this 
highly competitive business. Several models have been proposed in the literature to support the optimization of 
airline fleets, with the objective of minimizing the operational cost for the airline. On the other hand, the amount 
of literature dedicated to the optimization of the usage of airline’s fleets dedicated to Public Service Obligation 
(PSO) routes is much sparser. Based on the research developed by Pita et al. (2013), with case studies applied to 
the PSO networks of the Azores and Norway, this model is adapted, the objective of which is not only to minimize 
the cost to the airline, but also to minimize the total social costs. Then, the model is applied to a new case study 
based on a PSO network for the Greek islands, with key differences from the previous case studies such as strong 
competition from the ferry boat service.  
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1. Introduction 
Airports are key drivers of economic development 
for their respective catchment area( [1], [2], [3]). 
This is even visible in a global context, in extreme 
cases such as Dubai, which is nowadays a thriving 
emirate, due to the strategy in investing in their 
airport and airline carrier to make it a global hub for 
airline transport [4]. 
Due to the close dependence between the 
performance of the aviation business and economies, 
it is very important to set conditions that will allow 
this business to thrive. Besides this, the airline 
business is known to operate in challenging 
conditions, which is explained by the high costs and 
low profit margins involved. Hence, it is crucial for 
an airline’s long-term survival to use its resources in 
the most optimal way possible. There is extensive 
literature analyzing options to increase the operating 
margins of airlines (such as [5], [6], [7]). 
Also, there is extensive literature addressing 
specifically the problem of optimizing the airlines’ 
flight scheduling and fleet assignment (FSFA). The 
objective of such literature is to reduce the total 
operational cost for the airline. The result is usually 
the suppression of frequencies in less profitable 
routes and allocation of the resources to the most 
profitable ones. 
However, there are other routes, whose main 
objective is not to maximize profits but to provide 
accessibility to remote areas, where there is not 
enough demand for profitable airline operation. 
Nonetheless, this operation is vital for local 

communities, and in these networks, the objective is 
not only to minimize costs, but also to maximize the 
quality of the service provided to passengers. In this 
research area, there is comparatively less published 
literature, with an opportunity for important 
research. 
 
Integrated Flight Scheduling and Fleet 
Assignment Problem  
Although the airlines that operate within PSO 
networks are financially rewarded for their service, 
it remains critical for them to operate as efficiently 
as possible. On the other hand, the entity responsible 
for subsidizing the PSO network is focused on 
maximizing the quality of service provided to the 
users, but also in minimizing the cost of subsidies 
that it must provide. Hence, solving the Integrated 
Flight Scheduling Fleet Assignment problem 
(IFSFA), is the suitable tool to optimize such 
networks. 
The IFSFA model builds on the FSFA (which is only 
focused in cost reduction to the airline) by adding the 
minimization of the costs associated with the 
passenger, allowing for a more holistic view of the 
concept of an optimal network, not only reducing 
costs, but at the same time maximizing the quality of 
the service provided.  This is very important because 
these networks are, by definition, sub-optimal, due 
to the fact that flights are being imposed on routes 
that do not have enough demand to justify such 
route. 
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This problem has already been explored previously 
and published in the literature ( [8] and [9]) with 
positive results, reducing both financial costs for the 
airline and time costs for the passengers. In the 
present work, it will be applied to a different network 
with key differences, such as: the significant 
seasonality effect of demand (increasing in summer 
months due to tourism), or the significant 
competition from the boat service (an established 
transport in the region). 
 
2. Two Greek case studies 
This research applies an optimization model to two 
case studies located in Greece, within the Greek PSO 
network. Hence, for each case study, one “based” in 
Rhodes and another “based” in Thessaloniki, the 
airports which had PSO routes imposed connecting 
them to the “hub” airports were joined into two 
networks. 
Each network is comprised of 8 airports, including 
the “hub”, with 56 possible routes. These networks 
were chosen because, although they have the same 
amount of airports and are located relatively close to 
each other, they are different in terms of the amount 
of aircrafts employed, passengers transported, and 
frequencies imposed by the PSO, which will allow 
for a more comprehensive analysis of the Greek 
market. 
The goal of these case studies is to reduce the total 
costs of the networks to the lowest possible values. 
The total cost to be considered is the sum of the 
following four components: 

1. Aircraft direct operating costs; 
2. Aircraft ground costs; 
3. Passenger on board time costs; 
4. Passenger ground connection time costs. 

 
Rhodes Network 
The first case study has Rhodes airport as its “hub”. 
It can be considered the most simple network due to 
the smaller number of frequencies imposed, aircraft 
operating and the overall smaller costs involved, 
when compared to the second case study. 
 
In this network there are 7 routes imposed by the 
PSO. The fleet that operates this network is 
composed by one Bombardier Dash 8 Q100 aircraft 
and two ATR 42 aircrafts. This results from an 
extensive analysis of the aircrafts operating in these 
routes, through flight tracking websites, leading to 
the conclusion that this was the most accurate 
representation of the real situation. 
 
Costs 
Regarding the aircraft operating costs, from data 
provided by the HCAA from last summer, the 
number of movements and aircraft type associated 
with each origin-destination (O/D) pair was noted. 
Using this data multiplied by the duration of each 
flight, the total aircraft operating cost was estimated 

to be 53 771€, for a total of 50 flights, resulting in an 
average cost of 1 075€ per flight. 
 
Regarding the aircraft ground costs, they are 
considered to be the parking fees in the airport. It is 
common in the airline industry for airlines not to pay 
parking fees if the aircraft is on the ground for at least 
less than 2 hours [10]. Since these airlines schedule 
flights to avoid having aircrafts on the ground for 
more than 2 hours, it was considered that for the 
current network, aircraft ground costs are zero. 
 
Regarding the Passenger time costs, the total travel 
time for each O/D pair was compiled. These values 
were compiled through an extensive search from 
online travel websites, and for each O/D pair, the 
travel times of at least one full week were verified, 
and the shortest value was considered. This was done 
in order to allow for a fair comparison, due to the fact 
that there are days of the week which allow for better 
connections than others. Some routes have direct 
flights, whereas others require long connections, 
explaining the broad range of values for the travel 
time. 
 
With this information, for each O/D pair the 
passenger time costs were estimated using the 
following expression:  
 

!"# = #% × "" × !' (1) 
 
Where Ct is the cost of time for the passengers, TT 
the travel time and PN the number of passengers in 
that route. The total passenger time costs were then 
estimated by summing all the passenger time costs 
for each O/D pair associated with that network. The 
total passenger time costs were estimated to be 6 
470€ for a total of 375 passengers, resulting in an 
average travel time of 1 hour and 44 minutes per 
passenger. 
 
Summing all these components, the total cost for the 
Rhodes network was estimated to be 60 241€. 
 
Thessaloniki network 
This network is also comprised of 7 routes. These are 
operated by 2 dash 8 Q100, 2 dash 8 Q400 and 1 
ATR 42 aircrafts. The composition of the fleet in this 
network was obtained through the same process as in 
the previous network. 
 
Costs 
The same method was used to calculate the aircraft 
operating costs of this network. The total aircraft 
operating costs were estimated to be 134 424€, for a 
total of 62 flights, resulting in an average cost of 2 
168€ per flight (which is more than twice the average 
operating cost for the Rhodes network). 
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For the same reasons as explained for the Rhodes 
network, the aircraft ground costs for the 
Thessaloniki network were assumed to be 0€. 
 
Regarding the Passenger time costs, the total travel 
time for each O/D pair was compiled using the same 
method as in the previous network. Using equation 
(1), the total passenger time costs for the 
Thessaloniki network were estimated to be 27 637€ 
for a total of 1357 passengers (three times more 
passengers than in the Rhodes network), resulting in 
an average travel time of 2 hours and 1 minute per 
passenger. 
 
Summing all the components above, the total cost for 
the Thessaloniki network was estimated to be 162 
061€. 
 
3. Related Literature Review 
Demand Prediction 
Grosche et al. [10] proposed two possible gravity 
models, underlining the known fact that there is 
considerable unreliability with this task. The model 
is applicable to new markets, with the advantage of 
not relying on inputs that are not yet available to 
airlines before starting to operate the route. Instead, 
the model uses mainly geo-economic variables as 
independent factors. 
Wadud [11] published a paper analyzing demand 
prediction in areas where data to define explanatory 
variables is not available. This research highlights 
the challenges and uncertainties associated with the 
demand prediction task and performs it with limited 
data available, also taking into account the 
competition by road travel, which can be important 
in relatively small countries. 
Kluge et al. [12] perform an analysis applied 
specifically to the European market. The paper 
focuses on determining the relation between 
passenger air travel demand and factors such as the 
GDP, the urbanization level, the geographical 
location and the degree of education, proving that the 
first, third and fourth indicators were statistically 
significant. 
An interesting niche of this research subject is the 
demand prediction for markets with very strong 
touristic activity, due to the differences that these 
carry with them (such as seasonality, less importance 
of GDP when compared to more traditional business 
markets, very high ratios of tourist to inhabitant, etc). 
This type of markets have already been analyzed 
since at least 2002, when Devoto et al. [13] published 
their research focused on determining how demand 
could be predicted in these touristic markets, 
specifically using tourism variables (e.g. resident 
population, number of tourist beds, per capita beds 
and tourist arrivals). More recently, Erjongmanee & 
Kongsamutr [14] published a research focusing on 
demand forecasting in Thailand, taking into account 

the effect of tourism, with significant results as 
predicted. 
 
Fleet Optimization 
Lohatepanont & Barnhart [15] and Sherali et al. [16] 
are two widely recognized publications that assess 
the problem of flight scheduling and fleet 
assignment with the sole purpose of maximizing 
profit for airlines. These papers obtained interesting 
improvements in their case studies, with several 
publications building on this objective. One of these, 
published more recently, is Jamili [17] , which has 
the same objective, although exploring different 
methodologies to achieve it. 
The main reference for this work came from Pita et 
al. ( [8] and [9]), where a model was built that, 
instead of focusing on maximizing economic results 
for airlines, adds the objective of the maximization 
of the quality of the service provided to passengers. 
The models are applied to case studies in the PSO 
networks established in the Azores and in Norway, 
respectively. The second paper, builds on the first 
one, taking also into account the expenses and 
revenues of airport owners, associated with these 
routes. Both case studies obtained very interesting 
results, reducing costs in all the areas considered, 
and with impressive computational times required to 
reach the optimum solution. 
Continuing the previously mentioned research, 
Antunes et al. [18] focused on analyzing in depth the 
network of the Azores operated by SATA, working 
closely with the airline. This allowed real data to be 
used as much as possible, reducing the amount of 
assumptions. With the objective of analyzing the 
maximum reduction of operating costs that SATA 
could have achieved by optimizing the network and 
changing its route structure. This was done while 
satisfying the same passenger demand as in 2012, 
taking into account the implications of possible 
changes to the level of service offered. The paper 
proposed new shapes for the PSO imposed network, 
and quantified the improvements that could be 
obtained, with real data from a year in the past. The 
research concluded that the variable operating costs 
could be reduced significantly, which would save the 
government of the Azores a significant amount of 
funds in subsidies. 
Iliopoulou et al. [19] was analyzed due to the 
similarities it has with the present research. This 
paper proposes a sea-plane network in the Greek 
islands, which would compete against the locally 
well-established boat network. The objective is to 
minimize the travel cost, the size of the fleet and the 
unsatisfied demand between successive island ports, 
by proposing a new network, instead of optimizing 
an existent route. 
Ma et al. (2017) [20] addresses arguably one of the 
most discussed problems currently, which is the need 
for the reduction of carbon dioxide emissions. It 
develops an optimization model whose objective is 
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simultaneously maximize profit and minimize 
emissions associated with operating the flights. This 
model is applied to case studies from Asian airlines, 
with interesting results, namely that the optimal 
point obtained mathematically proved to be 
unreachable in real life. Besides this, the point 
achievable in reality that was closest to optimality 
had significant improvements over the current 
situation, and it was concluded that small reductions 
in profits lead to significant reductions in emissions. 
   
4. Construction of the optimization model 
The integer linear programming model will be 
discussed next. 
 
Decision variables 
The variables whose values will be optimized when 
running the model, the decision variables, are: 
1. y(a,t,r): number of aircrafts of type r that are on 

the ground in airport a, from time t to t+1; 
2. x(f,t,r): number of aircrafts of type r that fly 

route f, departing at time t and arriving at time 
[t+tF(f)], this variable is imposed to be binary; 

3. uD(f,t): number of passengers assigned to route 
f, taking off at t and landing at [t+tF(f)]; 

4. u1(f,a,t,wt): number of passengers assigned to 
the one stop itinerary which contains route f, and 
then continues to final destination a. Initial 
departure time is t, waiting time on the ground 
for connection is wt. Hence, the time of final 
arrival is given by [t+tF(f)+wt+tA(aF(f),a)]. 

5. u2(f1,f2,t,wt1,wt2): number of passengers 
assigned to the two stop itinerary which contains 
f1 as the first flight and f2 as the third flight, and 
has a flight joining the two airports as the second 
flight. Initial departure time is t and the waiting 
times on the ground are respectively wt1 and 
wt2. Hence, the time of final arrival is given by: 
[t+tF(f1)+wt1+tA(aF(f1),dF(f2))+wt2+tF(f2)]; 

6. gc(a,t,r): equal to 1 if aircraft r has been on the 
ground for more than 2 hours, starting at time t; 

 
It should be noted that this is not the most 
straightforward formulation, but with 56 routes, 8 
airports and 33 time periods, initial simpler 
formulations would quickly have too many indexes 
for a system with 8 Gigabytes (GB) of random access 
memory (RAM) to run out of memory (e.g. a 
reduction in the 106 order of magnitude was obtained 
in the amount of entries of u2). 
 
Objective function 
It is critical that the objective function is properly 
defined, and correctly reflects the physical reality of 
the problem. The objective function was defined as 

the minimization of the sum of seven components 
(O) to O*). It should be noted that the equations of 
the objective function were placed at the end of the 
document, in the appendix, in order to improve their 
readability, due to space limitations. 
 
The first component (2) reflects the direct costs for 
the airline, resulting from the operation of the flights.  
 
The second component (3) accounts for the costs to 
the airline, of having an aircraft of type r, parked on 
the ground in airport a, at time t (when it exceeds 2 
hours). 
 
The third, fourth and fifth components [(4), (5), (6)] 
account for the social cost to the passengers, 
quantified by the cost of time for them, for direct, 
one stop and two stops itineraries, respectively. The 
sixth and seventh components [(7), (8)] account for 
the social cost to the passengers, of having to wait 
between two flights, on the ground, respectively for 
one and two stop itineraries. Hence, it is obtained by 
summing the product of all the time on the ground in 
an airport, with the number of passengers and the 
cost of time on the ground for passengers.  
Constraints 
For the same reason as the objective function’s 
equations, those which define the constraints are also 
presented in the appendix. 
The first constraint (9) ensures that the sum of 
aircrafts on the ground and in the air, at any time 
period, is equal to the available number of aircrafts 
of that type. 
The second constraint (10) imposes continuity in 
each node. It imposes that the sum of the number of 
aircrafts arriving into an airport and aircrafts already 
parked there, is equal to the sum of aircrafts 
departing that airport and aircrafts that will stay 
parked there. 
Constraint (11) imposes that there are never more 
passengers assigned to a flight than the maximum 
allowed number of passengers to that flight. This is 
achieved by specifying that for all aircraft types, the 
sum of all passengers in direct or connecting flights 
is smaller or equal to the number of available seats.  
Constraint (12) ensures that the demand is satisfied, 
i.e. that all the passengers that must travel from one 
airport to another, will either be assigned to a direct,  
one-stop or two-stop itinerary. 
Constraints (13) and (14) impose that, respectively, 
the minimum number of flights and seats as imposed 
by the PSO, between any two airports is fulfilled. 
Constraints (15), (16), (17), (18) and (19) impose 
that, respectively, the number of aircrafts on the 
ground, in the air, passengers carried in direct, one-
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stop and two-stops itineraries are all positive 
integers. 
Constraints (20) and (21) impose that the fleet starts 
and ends the day at the hub. Constraints (22) and (23) 
allow the model to only consider aircraft ground fees 
if an aircraft stays on the ground for more than 2 
hours. Constraint (24) imposes that there are not two 
different flights operating on the same route, with an 
interval smaller than 3 hours. This had to be imposed 
because one solution fulfilled all the frequencies 
imposed by the PSO for a specific route with very 
small intervals, which is unreal. 
Besides the above-mentioned constraints, which are 
necessary for the correct specification of the 
problem, other “virtual” constraints were added. 
The goal was reducing the computation time to 
reasonable values and these constraints were added 
based on the concept of “helping” the model in 
narrowing down the range of possible solutions only 
to the reasonable ones. This removes from the scope 
of analysis of the software unreasonable solutions, 
such as placing passengers in itineraries which end 
the day in the same airport as that of departure. 
This specification of additional “virtual constraints” 
must be carried out carefully, under the risk of 
removing the actual optimal solution from the range 
of possible solutions to be analyzed by the model.  
Some examples of these constraints which were 
attempted, some with and some without success are: 
1. Whenever one aircraft is departing the “hub” 

airport, all the fleet is departing the “hub” 
airport at that time. This potentializes the hub 
effect, and increases the possibility of 
connections in the hub, requiring less flights 
overall; 

2. Imposing that in any moment in time there is a 
maximum of one aircraft operating in each 
route; 

3. Specifying a maximum of one flight for the 
whole time of the analysis, for all the routes that 
have no minimum amount of flights assigned by 
the PSO network, or have low demand; 

4. Impose that connecting itineraries which imply 
a total flown distance longer than 150% of the 
direct distance between O/D do not have 
passengers placed there. 

After specifying the optimization model, an 
illustrative example was defined, in order to verify 
its correct specification, with positive results. 
 
5. Predictive model  
 
The demand for the O/D pairs was estimated through 
multiple variable linear regression analysis, since 
this is a method commonly accepted in the literature 
concerning this area. With the objective of using 

published literature as a guideline, a literature review 
was carried out through published papers which 
analyze the problem of demand prediction, in order 
to choose the most suitable explanatory variables to 
the case study. A summary of the most common 
explanatory variables found in these publications 
was defined, and is presented below: 
1. GDP (either summing or multiplying both 

origin and destination, either total or per capita); 
2. Population (either summing or multiplying both 

origin and destination); 
3. Importance of tourism (either by number of 

tourist arrivals, hotel beds or per capita beds); 
4. Cost of ticket (either absolute, or compared to 

its competition (e.g. rail, car, boat…)); 
5. Travel time; 
6. Distance between airports. 
 
Since this case study has some particularities, other 
variables that could describe them were considered, 
and later its significance was assessed through the 
multiple variable linear regression analysis, such as: 
1. Existence of significant cruise ship terminals in 

the islands, since it is expected that the 
embarking and disembarking of cruise ship 
passengers will increase the demand of 
passengers for airliners; 

2. Competition of the ferry boats, since this is a 
well-established and very popular mean of 
transportation within the Greek archipelago. 

3. Effect of population ageing. The hypothesis that 
areas with a higher share of retired population 
would have proportionally less travelling will be 
tested. Since the average age of the population 
of some islands is above the Greek average, this 
was considered. 

 
The first step in the multiple variable linear 
regression analysis was the data collection, namely 
the values of the above explanatory variables, for 
each of the 240 O/D pairs (for the predictive model, 
both networks were joined into one). This data was 
collected through several sources, and is applicable 
to the month of August 2018.  
Once this information was collected, the regression 
was carried out using IBM’s SPSS software package, 
through a Poisson regression. 
This type of regression was chosen due to its greater 
suitability to these types of data sets, with very 
different values of the dependent variable (demand), 
which depend on explanatory variables by a power 
different than one. 
The regression went through several specification 
tests, in order to reach the most reasonable model 
possible, such as: 
1. Checking for overdispersion of data, through the 

Lagrange Test, in order to validate either the 
Poisson regression or the negative binomial 
regression as the best option; 
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2. Verification of the statistical significance of the 
parameters, through the Wald test and p-values; 

3. Analysis of the predictive capacity, through the 
Omnibus test; 

4. Comparison between models with different 
specifications, in order to choose the most 
suitable one. 

 
The key performance indicators on a small group of 
the best performing models was compiled into Table 
1, in order to choose the final model to be used. 
Models 2 and 5 were those with the most promising 
indicators 

After calculating this demand, the actual demand 
was compared with the predicted demand for the 66 
routes. It was concluded that, although model 5’s 
indicators suggested better performance, this model 
is strongly overestimating the demand for the 
smaller markets, and slightly overestimating for the 
bigger markets. Since the model is applicable to PSO 
routes, which are characterized by low demand, the 
decision that model 2 was the most suitable choice 
was made, due to the fact that the predicted values 
are closer to the actual values.

 
Table 1: KPI's of the different predictive model candidates 

Model M1 M2 M3 M4 M5 

offset included? No No Yes No Yes 

 Beta Std Dev. Beta Std Dev. Beta Std Dev. Beta Std Dev. Beta Std Dev. 

Log Population Product 0.56*** 0.12 0.30** 0.14 0.30** 0.096 0.47*** 0.11 0.19* 0.09 

Distance 0.01* 0.01 0.01*** 0.01 0.01*** 0.002 0.01** 0.01 0.01*** 0.01 

Frequency of flights 0.09*** 0.02 0.10*** 0.02 0.10*** 0.017 0.07*** 0.02 0.07*** 0.02 

Cost ticket air -0.01* 0.01 --------- ---------- --------- ---------- -0.01* 0.01 --------- ---------- 

Big market --------- ---------- 0.10*** 0.29 --------- ---------- --------- ---------- --------- ---------- 

Travel time --------- ---------- --------- ---------- --------- ---------- -0.46* 0.21 -0.55** 0.20 

Goodness of fit: 

AIC 8710.9 7414.4 7412.4 7749.1 6339.7 

log-likelihood -4350.5 -3702.2 -3702.2 -3868.6 -3164.8 

Deviance 8314.1 7017.5 7017.5 7350.3 5942.8 

6. Results and discussion 
After running the optimization through the Fico 
Xpress software package, satisfactory results were 
obtained in both networks. They will be presented 
and discussed in the following paragraphs, one 
network at a time. As a reference, the calculation was 
performed in a Windows 10 Pro operating system, 
running in a computer with an Intel(R) Core(TM) i7-
3770K CPU @ 3.50 GHz, and 8 GB of RAM 
memory 
Rhodes Network 
This network is considerably smaller than the 
network “based” in Thessaloniki (total costs are 42% 
of the value of the Thessaloniki network), and was 
less demanding to solve, with respect to 
computational effort. At the beginning, with all the 
inputs for the model defined, “virtual constraints” 
were added, with the objective of accelerating the 
convergence towards the optimal solution. Examples 
of these virtual constraints are restricting the number 
of flights for each route. Another virtual constraint 
that was attempted, was imposing that for every 
period of time, either no aircraft would depart the 
hub, or all the fleet would depart the hub, in an effort 
to promote the “hub effect”, and increase the number 

of passengers whose itinerary would be satisfied by 
connecting flights, reducing the total amount of 
flights. 
Unfortunately, although this technique reduced the 
computational times required for the solutions to be 
determined by the software significantly, after 
carefully analyzing the solutions, it was decided that 
these “virtual constraints” were not valid, because 
they were removing from the range of possible 
solutions, solutions with lower total costs, besides 
following all the real constraints. Hence, the decision 
to remove these virtual constraints was taken, with 
the purpose of achieving the real optimal solution, at 
the expense of longer computational solving periods. 
The optimal solution for the Rhodes network was 
obtained after 14 hours and 41 minutes, with an 
optimality gap of 8.58%. A schematic representation 
of the flights in the optimized network, including 
passengers on board was included in the appendix. 
The costs associated with these solution, and the 
comparison with the current network’s costs are: 
• Flight operating costs: 48 815€ for a total of 46 

flights, compared to 53 771€ for the current 
network, which requires 50 flights, a reduction 
of 9.2% in cost; 
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• Aircraft ground costs: 75€ compared with 0€ 
for the current network. This increase is 
considered negligible when compared to the 
other reductions obtained by the model. 

• Passenger time costs: 3 995€ for the time 
passengers spent on board the aircraft, and 860€ 
for the time passengers spent waiting on the 
ground for a connecting flight, in a total of 4 
855€ resulting in an average travel time of 1 
hour and 17 minutes per passenger, compared 
with 6 470€ for the current network and an 
average travel time of 1 hour and 44 minutes per 
passenger. This means a reduction of 24.9% in 
cost; 

• Total cost of the network: 53 745€ compared 
with 60 241€ for the current network. This 
means a reduction of 10.7% in the total cost of 
the network, with reductions in all the 
parameters, except a negligible increase from 0 
to 75€ in the aircraft ground costs, fulfilling the 
objective of not only reducing the financial costs 
associated with the network, but also improving 
the quality of service provided to the 
passengers, through reduction of the door to 
door travel time. 

 
Thessaloniki Network 
This network is, as already mentioned, significantly 
larger than the one discussed above, hence, it 
required longer computational times to reach 
solutions. After realizing that applying the virtual 
constraints was actually excluding optimal and valid 
solutions from the solution domain, it was decided to 
run this optimization right from the start without 
applying the virtual constraints which were excluded 
from the previous network, with the objective of 
guaranteeing that the software would consider every 
valid solution, at the expense of longer 
computational times. The optimal solution was 
found after 5 hours and 30 minutes, with an 
optimality gap of 11.26%. The model was then left 
running for another 15 hours, without any 
improvement. As with the previous network, the 
schematic representation of the flights in the 
optimized network was included in the appendix. 
The costs associated with this solution, and the 
comparison with the current network’s costs are: 
• Flight operating costs: 117 978€ for a total of 

54 flights, compared to 134 424€ for the current 
network, which requires 62 flights, a reduction 
of 12.2% in cost; 

• Aircraft ground costs: 225€ compared with 0€ 
for the current network. This increase is 
considered negligible when compared to the 
other reductions obtained by the model. 

• Passenger time costs: 21 900€ for the time 
passengers spent on board the aircraft, and 3 

565€ for the time passengers spent waiting on 
the ground for a connecting flight, in a total of 
25 465€ resulting in an average travel time of 1 
hour and 52 minutes per passenger, compared 
with 27 637€ for the current network and an 
average travel time of 2 hours and 02 minutes 
per passenger. This means a decrease of 7.86% 
in cost; 

• Total cost of the network: 143 668€ compared 
with 162 061€ for the current network. This 
means a reduction of 11.3% in the total cost, 
having reduced once again both the direct 
financial costs to the airlines, as well as the time 
costs for the passengers.  

Exploring scenarios 
As mentioned before, there were two demand model 
candidates considered statistically viable, but model 
2 was used in the optimization. In order to perform a 
sensitivity analysis, the optimization was also 
performed for the demand resulting from model 5. 
The results were positive, with improvements being 
obtained in all costs, except for the direct operating 
costs in the Thessaloniki network. The reason for 
this increase is believed to be the fact that there was 
an increase of 37% in demand, and the current 
network direct operating costs were kept constant, 
which is not likely to be a fair comparison.  
 
7. Conclusions, Limitations and Future  
Conclusions 
The present work adapted a published optimization 
model ( [8], [9]), in order to apply it to two case 
studies situated in the Greek PSO network. It 
demonstrated that the network can be improved, not 
only from a financial point of view, but also 
regarding passenger level of service.  
One of the main strengths of this work is combining 
both the development of a predictive model and a 
flight scheduling and fleet optimization model.  
The dataset presented challenges for the 
development of the Generalized linear model, such 
as significant overdispersion of data, which led to the 
rejected attempt to use a Negative binomial 
regression, followed by a Poisson regression with a 
Pearson chi-square scale parameter method. This 
resulted in the inability to use as many explanatory 
variables as initially intended, due to their statistical 
non-significance. Nevertheless, two demand models 
complied with the desired level of performance in 
the evaluated KPI’s, and were tested in the 
optimization model. 
The optimization resulted in significant 
improvements, in the order of 10% in both networks, 
while following all the constraints specified, in order 
to properly characterize the particularities of the 
Greek PSO market. 
 
Limitations 
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This research holds some limitations, which should 
be acknowledged by the readers. Firstly, regarding 
the results of the predictive model, its inherent 
uncertainty should not be disregarded. This is partly 
explained by the lack of data available and by the 
low demand values for these O/D pairs and is 
demonstrated by the significant difference in the 
prediction between the two final candidates for 
demand model. 
Moreover, regarding the optimization model, 
although 48 hours is an acceptable duration for 
running this computation, required twice a year, its 
convergence towards optimality is limited. This is 
demonstrated by the difficulty for the model to 
improve solutions. Also, the optimality gap of the 
calculations was around 8% which is not ideal. 
 
Future Work 
From the point of view of the predictive model, more 
attention into attempting to obtain significance from 
variables related to the importance of tourism and of 
the competition of the boat service is also an 
important opportunity. 
Regarding the optimization model, one interesting 
opportunity, is to develop a similar research, but 
optimizing the network for the winter months, and 
using demand data from the same period for the 
regression. Then, an in depth comparison between 
both networks should bring interesting data, in a 
market with such a strong effect from seasonality, 
mostly due to tourism. 
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Appendix 
 O" = 	 % c'(r). ,'(f). x(f, t, r)

1	∈	34,5	∈	6,7	∈	8	

 (2) O9 = % c:(a, r). g=(a, t, r)
>	∈	?,5	∈	6,7	∈	8	

 (3) 

O@ = % cA. [t3(f) + t?(a3(f), a)]. u"(f, a, t, wt)
1	∈	34,>∈	?

	5∈	6,G5∈	H6	

 (4) OI = % cA. t3(f). uJ(f, t)
1	∈	34,5	∈	6	

 (5) 

OK = % LM. N,O(P") + ,QRS'(P"), T'(P9)U + ,O(P9)V. W9(P", P9, ,, X,", X,9)
{1Z,1[}	∈	34,5∈	6,
{]^Z,]^[}	∈	H6		

 (6) O_ = % cH.wt. u"(f, a, t, wt)
1	∈	34,>∈	?

	5∈	6,G5∈	H6	

 (7) 

%`(P). a(b). c(P, ,, b) ≥ We(P, ,)
f∈g

+ % W"(P, S, ,, X,)
h∈i,]^∈jk

+ % W"(P", S, ,", X,)
lZ∈'m,			h∈i,^Z∈k,			]^	∈	jk|

ho(lZ)pqo(l)∧ho(l)ph∧(^Zs^o(lZ)s]^)p^

+ % W9(P, P", ,, X,", X,9) + % W9(P", P9, ,", X,", X,9)
{lZ;l[}∈'m,			^"∈k,			{]^Z;]^[}∈jk|

ho(lZ)pqo(l)∧qo(l[)pho(l)∧(^Zs^o(lZ)s]^Z)p^

+
lZ∈'m,{]^Z;]^[}∈jk

% W9(P", P, ,", X,", X,9)
lZ∈'m,			^Z∈k,			{]^Z;]^[}∈jk|

(^Zs^o(lZ)s]^Zs^u(ho(lZ),qo(l))s]^[)p^

,					∀	P ∈ Ow, , ∈ x 
(8) 

y(S, , − 1, b) +	 % c(P, , − ,'(P), b) = y(S, ,, b) +
l	∈	'm|

ho(l)ph ⋀ ^}^o(l)

% c(P, ,, b)
l	∈	'm|
qo(l)ph	

		 , ∀S ∈ Q, , ∈ x ∖ {1}, b ∈ � (9) 

OÄ = % cH.		(wt" + wt9). u9(f", f9, t, wt", wt9)
{1Z,1[}	∈	34,5∈	6,
{]^Z,]^[}	∈	H6		

 (10) 

 

% y(S, ,, b) +	
h	∈	i

% c(P, ,", b) = Å(b)	,											∀	, ∈ x, b ∈ �		
l	∈	'm,^Z∈	k|

^ZÇ^É(^Zs^o(l))

 (11) 
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% a(b). c(P, ,, b)
^∈k,			f∈g

≥ aÑÖÜ(P)				, ∀P ∈ Ow (12) 

%We(P, ,)
^∈k

+ % W"(P", S, ,, X,)
lZ∈'m,^∈k,]^∈jk,h∈i|
qo(l)plZ		∧		ho(l)ph

+ % W9(P", P9, ,, X,", X,9)
{lZ;l[}∈'m,^∈k,{]^Z;]^[}∈jk|
qo(l)pqo(lZ)	∧		ho(l)pho(l[)

= á(P),							∀P ∈ Ow (13) 

% c(P, ,, b)
^∈k,			f∈g

≥ cÑÖÜ(P)				, ∀P ∈ Ow (14) 

y(S, ,, b) ∈ ℤ			, ∀	S ∈ Q, , ∈ x, b ∈ � (15) c(P, ,, b) ∈ ℤ		, ∀	P ∈ Ow, , ∈ x, b ∈ � (16) 

W"(P, S, ,, X,) ∈ ℤ			, ∀	P ∈ Ow, S ∈ Q, , ∈ x,X, ∈ âx (17) We(P, ,) ∈ ℤ			, ∀	P ∈ Ow, , ∈ x (18) 

% c(P, 1, b)
l∈'m|qo(l)pä

+ y(8,1, b) = Å(b)					, ∀	b ∈ � (19) W9(P", P9, ,, X,", X,9) ∈ ℤ			, ∀	{P"; P9} ∈ Ow, , ∈ x, {X,";X,9} ∈ âx (20) 

y(8,33, b) = Å(b)			, ∀	b ∈ � (21) çé(S, ,, b) ∈ {0,1}			, ∀	S ∈ Q, , ∈ x, b ∈ � (22) 

çé(S, ,, b) ≥ y(S, ,, b) + y(S, , + 1, b) + y(S, , + 2, b) + y(S, , + 3, b) − 3.5		, ∀	a ∈ Q, b ∈ �, , ∈ x ∖ {31,32,33}	 (23) 

%[c(P, ,, b) + c(P, , + 1, b) + c(P, , + 2, b) + c(P, , + 3, b) + c(P, , + 4, b) + c(P, , + 5, b)]
f∈g

≤ 1,			∀	P ∈ Ow, , ∈ x ∖ {29,30,31,32,33}														 (24) 


